7 Haziran 2020 Pazar
.
1
1
1
.
chevron_left chevron_right
BİLİM

Maddenin Sıradışı Hali: Bose-Einstein Yoğunlaşması

Hepimiz günlük hayat deneyimlerimizden maddenin katı, sıvı ve gaz hallerine aşinayızdır. Peki maddenin farklı koşullarda başka hallerinin de olduğunu biliyor muydunuz?

85 Gösterim
Maddenin Sıradışı Hali: Bose-Einstein Yoğunlaşması

Maddenin 5 Halini Ne Belirler?

Maddenin bilinen 5 hali vardır: katı, sıvı, gaz, plazma ve tuhaf özellikleriyle Bose-Einstein Yoğunlaşması (BEY). Acaba suyun gaz hali olan su buharı ile katı hali olan buz arasındaki temel farkı ne sağlamaktadır? Ya da soruyu daha farklı sorarsak, maddenin 5 halini belirleyen şey nedir?

 

Bu sorunun cevabı, atomları oluşturan parçacıkların yoğunlukları ile alakalıdır. Katı bir maddede parçacıklar sıkı sıkı bir arada bulunduklarından serbestçe hareket edemezler ve bu yüzden de belli bir hacme ve şekle sahiptirler; yani, adı üzerinde, “katı”dırlar. Sıvılarda parçacıklar, biraz daha dağınık halde ama yine de birbirlerine yakın vaziyettedirler. Bu durum, sıvıların girdiği kabın şeklini almasının sebebidir. Gaz parçacıkları arasında ise oldukça büyük boşluklar bulunur ve bu parçacıkların kinetik enerjileri fazladır, yani sınırlandırılmadıkları sürece etrafa belirsiz bir şekilde yayılırlar. Plazmaya gelirsek… Plazma halinde, maddenin aşırı ısınması sonucu iyonlar ve elektronlar serbestçe dolaşabilir duruma gelir. Dolayısıyla bir plazmanın, tıpkı gazlarda olduğu gibi, belirli bir şekli ya da hacmi yoktur.

Bir Tuhaf Hal

Parçacıkların belli enerji seviyeleri vardır. Katı, sıvı, gaz ve plazma halleri arasında bu enerji seviyesi katı halde en düşük; plazma halinde ise en yüksektir. Diğer bir deyişle bir gazı yeterince soğutursanız (enerjisini düşürürseniz) sıvı, bir sıvıyı yeterince soğutursanız da katı madde elde edersiniz. Parçacıklardan daha da yüksek miktarda enerji çıkarttığınızda ise mümkün olan minimum enerji seviyesine, yani maddenin en tuhaf hallerinden biri olan Bose-Einstein Yoğunlaşmasına (BEY) ulaşırsınız. Gazlarda veya bir plazmada birbirlerinden bağımsız hareket eden parçacıkların aksine, bir BEY içerisinde tüm parçacıkların hepsi bir bütün gibi, tamamen aynı yöne doğru “büyük bir dalga” halinde hareket ederler.

 

“Parçacık”, “dalga” ve “tuhaflık” sözcüklerinin bize ne anlatmaya çalıştığını az çok tahmin etmişsinizdir… Evet, doğru tahmin: Bose-Einstein Yoğunlaşması kuantum fiziksel özelliklere sahiptir. Peki bu özelliklere nasıl sahip olurlar?

 

Bose-Einstein Yoğunlaşması, mutlak sıfır derecesine çok çok yakın derecelerde soğutulan atom topluluğuna denir (mutlak sıfır = 0 Kelvin veya −273,15°C’dir). Mutlak sıfır civarında parçacıklar aynı enerji seviyesine düşerek kümeleşmeye başlarlar. Diğer bir deyişle, artık kafasına buyruk ve bireysel hareket eden parçacıklar yoktur; hepsi adeta bir kimlik bunalımına girmiş gibi “aynı” kimliğe bürünmüşlerdir ve bir küme halinde “tek bir atommuşçasına” hareket etmeye başlarlar.

 

Fikirler ve Onları Gerçek Kılanlar

1925’te Hintli fizikçi ve aynı zamanda “bozon”un isim babası olan Satyendra Bose yayımlayamadığı makalesini Albert Einstein’a gönderir. Bose’un ışık parçacıklarının istatistiksel olarak nasıl davrandığını gösterdiği bu çalışmasını bir hayli önemli bulan Einstein konuyla ilgili daha fazla hesaplama yaparak bu fikri atomlara uyarlamaya çalışır ve mutlak sıfıra oldukça yakın sıcaklıklarda parçacıkların kuantum kurallarına uyduğu maddenin yeni bir hali olabileceği tahminini yürütür. İki fizikçinin ortaklaşa katkı yaptıkları bu fikir böylelikle Bose-Einstein Yoğunlaşması adıyla anılır. Teori böylesi bir madde halinin var olması gerektiğini söylese de öngörülmüş olan bu sıra dışı hal 1995 yılına gelene kadar elde edilememiştir. 1995’te Colorado Üniversitesinden Eric Cornell ve Carl Wieman rubidyum atomlarını; MIT’den Wolfgang Ketterle sodyum atomlarını lazerler ve mıknatıslar yardımıyla mutlak sıfıra çok yakın bir sıcaklığa indirmeyi başardılar ve bu başarılarından dolayı 2001 yılında Nobel Fizik Ödülünü aldılar.

 

BEY Kuantum Özellikler Sergiliyor

Bu ultra soğuk sıcaklıkta (mutlak sıfırın bir derece üstünün milyarda biri sıcaklıkta) moleküler hareket neredeyse durma noktasına gelir. Kinetik enerji transferi bir atomdan diğerine yok denecek kadar az olduğundan atomlar kümelenmeye başlar. Artık birbirinden ayrı duran binlerce atom yoktur; aynı şekilde davranan ve dev bir dalgaymış gibi hareket eden sadece tek bir “süper atom” vardır.

 

Bose-Einstein yoğuşuk maddesi süper akışkan özelliğe, yani sıfır viskoziteye sahiptir. (Sıfır viskozite: sıvının akarken hiçbir direnç göstermeyip kinetik enerji kaybının olmaması durumudur.) Sıfır viskoziteye sahip bir madde ise içinde bulunduğu kabın kenarlarından tırmanıp dışarıya taşabilir, hatta kabın sahip olduğu molekül büyüklüğündeki çatlaklardan dışarıya sızabilir. (Süper sıvı helyum ile ilgili şu videoya göz atabilirsiniz (video İngilizcedir):


Kaynak: https://evrimagaci.org




Dikkat! Ens.az sitesine ait materyalleri kullanırken köprüye başvurmalısınız. Metinde bir hata bulursanız, lütfen onu seçin ve ctrl + enter tuşlarına basarak bize gönderin.


Bir Android OS akıllı telefonunuz varsa, haberleri daha kolay okumak için bu bağlantıya gidin. Ens.az ı mağazadan indirip kurabilirsiniz.


VİDEO GALERİ
San Francisco temelli bir firmanın tavuk tüyünden laboratuarda yetiştirdiği tavuk eti
Emojilerle tepki ver!
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0 Yorum
  • anonymous user
    Yorumu gönder
  • DAHA FAZLA SONUÇ YÜKLE

X